

PERTH MODERN SCHOOL

Exceptional schooling. Exceptional students. Independent Public School

Course Specialist

Year 11

Student name:	Teacher name:
Date: 22 July 2022	
Task type:	Response
Time allowed for this tasl	k: <u>40</u> mins
Number of questions:	6
Materials required:	Calculator-Free
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates
Marks available:	<u>40</u> marks
Task weighting:	10%
Formula sheet provided:	Yes

Note: All part questions worth more than 2 marks require working to obtain full marks.

Question 1 (2.2.1, 2.2.2)

2 | P a g e

(b) Determine AB

	Solution
	$AB = \begin{bmatrix} 3 & -1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 5 & 2 \end{bmatrix}$ $= \begin{bmatrix} (3)(-3) + (-1)(5) & (3)(2) + (-1)(2) \\ (1)(-3) + (4)(5) & (1)(2) + (4)(2) \end{bmatrix}$ $= \begin{bmatrix} -14 & 4 \\ 17 & 10 \end{bmatrix}$
	Specific behaviours
\checkmark one correct element of AB	
\checkmark two correct elements of AB	
\checkmark all correct elements of AB	

X = 2A - B = $2 \begin{bmatrix} 3 & -1 \\ 1 & 4 \end{bmatrix} - \begin{bmatrix} -3 & 2 \\ 5 & 2 \end{bmatrix}$ = $\begin{bmatrix} 6 & -2 \\ 2 & 8 \end{bmatrix} - \begin{bmatrix} -3 & 2 \\ 5 & 2 \end{bmatrix}$ = $\begin{bmatrix} 9 & -4 \\ -3 & 6 \end{bmatrix}$		
Specific heberioure		
Specific behaviours		
\checkmark correct expression for X in terms of A and B		
✓ correct elements of 2A		
\checkmark correct elements of X		

Solution

- If $A = \begin{bmatrix} 3 & -1 \\ 1 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -3 & 2 \\ 5 & 2 \end{bmatrix}$
 - (a) Determine the matrix *X* such that 2A X = B

(3 marks)

(3 marks)

Question 2 (1.3.3)

(5 marks)

Let *n* be an integer. Prove that n + 2 is even if and only if n + 1 is odd.

Solution	
(⇒):	
If $n + 2$ is even, then $n + 2 = 2k$, where $k \in Z$.	
n + 1 = 2k - 1	
= 2k - 2 + 1	
= 2(k-1) + 1	
Hence, $n + 1$ is odd.	
(⇐):	
If $n + 1$ is odd, then $n + 1 = 2k + 1$, where $k \in \mathbb{Z}$.	
n + 2 = 2k + 2	
= 2(k+1)	
Hence, $n + 2$ is even.	
$11 \in \mathbb{N} \subset \mathbb{N} \to \mathbb{Z}$	
Specific behaviours	
\checkmark recognises the need to prove both \Rightarrow and \Leftarrow	
\checkmark writes $n + 2$ as $2k, k \in \mathbb{Z}$	
\checkmark proves that $n + 1$ is odd in terms of $2Z + 1$	
\checkmark writes $n + 1$ as $2k + 1$, $k \in Z$	
\checkmark proves that $n + 2$ is even in terms of 2Z	

Write whether each of the following statement is true or false, then prove or disprove it accordingly.

(a) $\forall n \in N, n^2 - n + 7$ is prime. (3 marks) Solution The statement is false, and is disproved with the following counterexample: Let n = 7. Then $n^2 - n + 7 = 49 = 7 \times 7$, which is not prime. Specific behaviours \checkmark states false \checkmark states counterexample with a particular value of n \checkmark shows that for that value of $n, n^2 - n + 7$ is not prime.

(b) For all irrational numbers p and q, where $p \neq q$, $\frac{p}{q}$ is always irrational.

(3 marks)

Solution		
The statement is false , and is disproved with the following counterexample:		
Let $p = \sqrt{8}$ and $q = \sqrt{2}$.		
Then, $\frac{p}{q} = \frac{\sqrt{8}}{\sqrt{2}} = \frac{\sqrt{4} \times \sqrt{2}}{\sqrt{2}} = 2$ which is rational.		
Specific behaviours		
✓ states false		
\checkmark states counterexample with particular values of p and q		
\checkmark shows that for those values of p and q, $\frac{p}{q}$ is not irrational.		

(c) There exist two different irrational numbers such that their sum is rational. (3 marks)

Solution	
The statement is true , and is proved with the following example:	
Let the two irrational numbers be $\sqrt{2}$ and $(1 - \sqrt{2})$.	
Then $\sqrt{2} + (1 - \sqrt{2}) = 1$ which is rational.	
Specific behaviours	
✓ states true	
a states example with portional numbers of two different imptional numbers and	

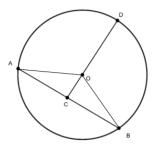
 \checkmark states example with particular values of two different irrational numbers and

 \checkmark shows that for those two different irrational numbers, the sum is rational.

(6 marks)

Question 4 (1.3.15)

A circle with centre O is shown below (not drawn to scale). Given its radius is r and chord AB = x with $AB \perp CD$, and centre O is on CD



(a) prove that CD bisects AB. [Hint: Use congruent triangles] (2 marks)

Solution	
(Connect OA and OB)	
For $\triangle AOC$ and $\triangle BOC$:	
$\angle OCA = \angle OCB = 90^{\circ}$ (given)	
OA = OB (radii)	
OC is common	
$\therefore \Delta AOC \equiv \Delta BOC \text{ (RHS)}$	
$\therefore AC = BC$	
Hence, CD bisects AB	
Specific behaviours	
\checkmark prove $\triangle AOC \equiv \triangle BOC$ with correct congruence tests	
\checkmark states $AC = BC$	

(b) show that
$$CD = \frac{2r + \sqrt{4r^2 - x^2}}{2}$$
.

(4 marks)

Solution
$OA = r$ and $AC = \frac{x}{2}$
$OC = \sqrt{r^2 - \left(\frac{x}{2}\right)^2}$ (Pythagoras' theorem)
$= \sqrt{r^2 - \frac{x^2}{4}} = \sqrt{\frac{4r^2 - x^2}{4}} = \frac{\sqrt{4r^2 - x^2}}{2}$ $CD = r + \frac{\sqrt{4r^2 - x^2}}{2}$
$CD = r + \frac{\sqrt{4r^2 - x^2}}{2}$
$=\frac{2r+\sqrt{4r^2-x^2}}{2}$
Specific behaviours
\checkmark states $AC = \frac{x}{2}$
\checkmark expresses OC in terms of r and x using Pythagoras'
\checkmark simplifies expression for OC
\checkmark expresses CD as r plus OC and simplifies

Perth Modern

Question 5 (2.3.4, 2.3.5)

Use mathematical induction to prove that $\frac{1}{2\times 5} + \frac{1}{5\times 8} + \cdots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{6n+4}$ for all $n \in Z^+$.

Solution Let P(n) denote the proposition $\frac{1}{2\times 5} + \frac{1}{5\times 8} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{6n+4}$, for all $n \in Z^+$. For P(1): LHS = $\frac{1}{2\times 5} = \frac{1}{10}$ RHS = $\frac{1}{6\times 1+4} = \frac{1}{10}$

LHS=RHS, so P(1) is true.

Assume that P(k) is true for some positive integer k. Then

$$\frac{1}{2\times 5} + \frac{1}{5\times 8} + \dots + \frac{1}{(3k-1)(3k+2)} = \frac{k}{6k+4}.$$

Now

LHS of
$$P(k+1) = \frac{1}{2 \times 5} + \frac{1}{5 \times 8} + \dots + \frac{1}{(3k-1)(3k+2)} + \frac{1}{(3(k+1)-1)(3(k+1)+2)}$$

$$= \frac{k}{6k+4} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{k}{2(3k+2)} + \frac{1}{(3k+2)(3k+5)}$$

$$= \frac{k}{2(3k+2)} \times \frac{(3k+5)}{(3k+5)} + \frac{1}{(3k+2)(3k+5)} \times \frac{2}{2}$$

$$= \frac{3k^2 + 5k + 2}{2(3k+2)(3k+5)}$$

$$= \frac{(3k+2)(k+1)}{2(3k+2)(3k+5)}$$

$$= \frac{k+1}{6k+10}$$

$$= \frac{k+1}{6(k+1)+4}$$

$$= \text{RHS of } P(k+1)$$

Hence, by the principle of mathematical induction, P(n) is true for all positive integers n.

Specific behaviours

 \checkmark proves P(1) by evaluating LHS and RHS separately

 \checkmark assumes P(k) is true

 \checkmark writes LHS of P(k + 1) using RHS of P(k)

 \checkmark simplifies expression algebraically to one fraction

✓ factorises numerator with a factor of (3k + 2)

 \checkmark obtains expression for RHS of *P*(*k* + 1) written in terms of *k* + 1

✓ writes conclusion for whole proof

Question 6 (2.3.4, 2.3.6)

Use the principle of mathematical induction to prove the following statement:

 $3^{2n+4} - 3^{2n}$ is divisible by 5 for all positive integers n.

Solution		
Let $P(n)$ denote the proposition $3^{2n+4} - 3^{2n}$ is divisible by 5' for all positive integers <i>n</i> .		
For $P(1)$: $3^6 - 3^2 = 720$		
720 is divisible by 5, so $P(1)$ is true.		
720 15 divisible by 5, 50 I (1) 15 title.		
Assume that $P(k)$ is true for some positive integer k. Then		
$3^{2k+4} - 3^{2k} = 5m$, where $m \in \mathbb{Z}$		
Now		
For $P(k+1)$:		
$3^{2(k+1)+4} - 3^{2(k+1)}$		
$=3^{2k+6}-3^{2k+2}$		
$= 3^{2k+4} \times 3^2 - 3^{2k} \times 3^2$		
$= 3^2 (3^{2k+4} - 3^{2k})$		
= 9(5m)		
= 5(9m) which is divisible by 5		
$\therefore P(k+1)$ is true.		
Hence, by the principle of mathematical induction, $P(n)$ is true for all positive integers n .		
Specific behaviours		
\checkmark proves $P(1)$ by evaluating $3^6 - 3^2$		
\checkmark assumes $P(k)$ is true		
\checkmark writes $P(k+1)$ in terms of $k+1$		
\checkmark simplifies expression algebraically using index law for multiplication		
\checkmark factorises expression with a factor of $(3^{2k+4} - 3^{2k})$		
\checkmark obtains expression for $P(k + 1)$ written as a multiple of 5		
✓ writes conclusion for whole proof		

Additional working space

Question number: _____